RADIOBIOLOGIA

La radiobiología es la ciencia que estudia los fenómenos que se producen en los seres vivos tras la absorción de energía procedente de las radiaciones ionizantes.
Las dos grandes razones que han impulsado la investigación de los efectos biológicos de las radiaciones ionizantes son:
  1. Protección Radiológica: Poder utilizar esas radiaciones de forma segura en todas las aplicaciones médicas o industriales que las requieran.
  2. Radioterapia: Utilización de las radiaciones ionizantes principalmente en neoplasias, preservando al máximo los órganos críticos (tejido humano sano).
Características de los efectos biológicos de las radiaciones ionizantes
  1. Aleatoriedad: La interacción de la radiación con las células es una función de probabilidad y tiene lugar al azar. Un fotón o partícula puede alcanzar a una célula o a otra, dañarla o no dañarla y si la daña puede ser en el núcleo o en el citoplasma.
  2. Rápido depósito de energía: El depósito de energía a la célula ocurre en un tiempo muy corto, en fracciones de millonésimas de segundo.
  3. No selectividad: La radiación no muestra predilección por ninguna parte o biomolécula, es decir, la interacción no es selectiva.
  4. Inespecificidad lesiva: Las lesiones de las radiaciones ionizantes es siempre inespecífica o lo que es lo mismo esa lesión puede ser producida por otras causas físicas.
  5. Latencia: Las alteraciones biológicas en una célula que resultan por la radiación no son inmediatas, tardan tiempo en hacerse visibles a esto se le llama "tiempo de latencia" y puede ser desde unos pocos minutos o muchos años, dependiendo de la dosis y tiempo de exposición.

Tipos de efectos de la radiación sobre los seres vivos

Los efectos de las radiaciones ionizantes sobre los seres vivos se pueden clasificar desde distintos puntos de vista:

Según el tiempo de aparición

  • Precoces: Aparecen en minutos u horas después de haberse expuesto a la radiación, por ejemplo eritema cutáneo, náuseas.
  • Tardíos: Aparecen meses u años después de la exposición, por ejemplo cáncer radioinducido, radiodermitis crónica, mutaciones genéticas.

Desde el punto de vista biológico

  • Efectos somáticos: Sólo se manifiestan en el individuo que ha sido sometido a la exposición de radiaciones ionizantes por ejemplo el eritema.
  • Efecto hereditario: No se manifiestan en el individuo que ha sido expuesto a la radiación, sino en su descendencia, ya que lesionan las células germinales del individuo expuesto, por ejemplo las mutaciones genéticas.

Según la dependencia de la dosis

  • Efecto estocástico: Son efectos absolutamente aleatorios, probabilísticos; pudiendo aparecer tras la exposición a pequeñas dosis de radiación ionizante. No necesitan una dosis umbral determinada para producirse; si bien al aumentar la dosis aumenta la probabilidad de aparición de estos efectos, que suelen ser de tipo tardío. Se cree que el único efecto estocástico es el cáncer radioinducido y las mutaciones genéticas.
  • Efecto no estocásticas: Se necesita una dosis umbral para producirlos, por debajo de la cual, la probabilidad de aparición de los mismos es muy baja. Suelen ser efectos precoces, por ejemplo el eritema cutáneo.

Etapas de la acción biológica de la radiación

Los efectos de las radiaciones ionizantes sobre la materia viva son el resultado final de las interacciones físicas (ionización) y (excitación) de los fotones o partículas con los átomos que la componen.
Los efectos de la radiación sobre los seres vivos pasan por sucesivas etapas que se ordenan aquí según su escala de tiempo, de menor a mayor.

Etapa Física

Es una respuesta inmediata que ocurre entre billonésimas y millonésimas de segundo. En esta etapa se produce la interacción de los electrones corticales con los fotones o partículas que constituyen el haz de radiación. Los electrones secundarios originados en la interacción, excitan e ionizan a otros átomos provocando una cascada de ionizaciones. Se estima que un Gray de dosis absorbida produce 100000 ionizaciones en un volumen de 10 micras cúbicas.
  • La acción directa de la radiación es consecuencia de ionizaciones que se producen en los átomos que forman la molécula del ADN, fenómeno dominante en radiaciones con alta transferencia lineal de energía (LET) como las partículas alfa, beta y protones, que inciden directamente sobre los átomos de las moléculas.
  • La acción indirecta de la radiación es la interacción del haz de radiación con otros átomos y moléculas de la célula como el agua, produciéndose radicales libres que al difundir hasta la molécula de ADN, la dañan de manera indirecta.

Etapa Química

Esta etapa es de un orden ligeramente mayor estando en una escala de entre una millonésima de segundo y un segundo. Es el proceso de la interacción de los radicales libres resultantes de la radiolisis del agua, que originan una serie de reacciones químicas con moléculas de solutos presentes en el medio irradiado y que producirán la inducción de un cierto grado de lesión biológica. Cuando las radiaciones interaccionan con la materia viva se producen fenómenos fisicoquímicos, pues la ionización y excitación suponen un incremento de energía para las moléculas, lo que compromete su estabilidad; dependiendo de la importancia de la molécula afectada, la lesión biológica será más o menos importante.

Efecto oxígeno

El oxígeno es un potente radiosensibilizante, es decir, aumenta el efecto de la irradiación. Cuando el TLE (LET en inglés) es bajo, es necesario en ausencia de oxígeno (anoxia) multiplicar la dosis por un factor de 2,5 a 3 para obtener el mismo efecto que en presencia de oxígeno. Se llama OER (del inglés Oxigen Enhancement Ratio) o razón de aumento de oxígeno, al número de dosis necesaria para obtener el mismo efecto según condiciones de anoxia o de oxigenación normal. El oxígeno, al combinarse con los radicales libres, produce un aumento de la vida media de éstos y la fijación del daño radioinducido.

Moléculas donadores de H

Las moléculas donadores de H, como las que contienen grupo sulfhidrilo (-SH), pueden neutralizar los radicales libres, teniendo un papel protector, ya que se ha demostrado que el aumento o disminución en los niveles intracelulares de grupos -SH, origina cambios paralelos en la supervivencia celular.

Etapa biológica

La etapa biológica se inicia con la activación de reacciones enzimáticas para reparar el daño producido por las radiaciones. Algunas de estas lesiones serán reparadas y no influyen en la viabilidad celular y otras no serán reparadas con lo que se producirá la muerte celular en interfase, mitosis o incluso después de varias divisiones celulares tras la exposición a la radiación. Las consecuencias biológicas de la irradiación celular se manifiestan mucho tiempo después como:
  1. La respuesta de los tumores a la radioterapia.
  2. Los efectos secundarios agudos y tardíos asociados a la radioterapia.
  3. Desarrollo de neoplasias radioinducidas a largo plazo por mutaciones en células somáticas.
  4. Desarrollo de malformaciones genéticas en la descendencia por mutaciones en células germinales.
Efecto oxígeno

El oxígeno es un potente radiosensibilizante, es decir, aumenta el efecto de la irradiación. Cuando el TLE (LET en inglés) es bajo, es necesario en ausencia de oxígeno (anoxia) multiplicar la dosis por un factor de 2,5 a 3 para obtener el mismo efecto que en presencia de oxígeno. Se llama OER (del inglés Oxigen Enhancement Ratio) o razón de aumento de oxígeno, al número de dosis necesaria para obtener el mismo efecto según condiciones de anoxia o de oxigenación normal. El oxígeno, al combinarse con los radicales libres, produce un aumento de la vida media de éstos y la fijación del daño radioinducido.

Moléculas donadores de H

Las moléculas donadores de H, como las que contienen grupo sulfhidrilo (-SH), pueden neutralizar los radicales libres, teniendo un papel protector, ya que se ha demostrado que el aumento o disminución en los niveles intracelulares de grupos -SH, origina cambios paralelos en la supervivencia celular.

Etapa biológica

La etapa biológica se inicia con la activación de reacciones enzimáticas para reparar el daño producido por las radiaciones. Algunas de estas lesiones serán reparadas y no influyen en la viabilidad celular y otras no serán reparadas con lo que se producirá la muerte celular en interfase, mitosis o incluso después de varias divisiones celulares tras la exposición a la radiación. Las consecuencias biológicas de la irradiación celular se manifiestan mucho tiempo después como:
  1. La respuesta de los tumores a la radioterapia.
  2. Los efectos secundarios agudos y tardíos asociados a la radioterapia.
  3. Desarrollo de neoplasias radioinducidas a largo plazo por mutaciones en células somáticas.
  4. Desarrollo de malformaciones genéticas en la descendencia por mutaciones en células germinales.